119 research outputs found

    Diffusion weighted imaging in cystic fibrosis disease: beyond morphological imaging

    Get PDF
    To explore the feasibility of diffusion-weighted imaging (DWI) to assess inflammatory lung changes in patients with Cystic Fibrosis (CF) METHODS: CF patients referred for their annual check-up had spirometry, chest-CT and MRI on the same day. MRI was performed in a 1.5 T scanner with BLADE and EPI-DWI sequences (b = 0-600 s/mm(2)). End-inspiratory and end-expiratory scans were acquired in multi-row scanners. DWI was scored with an established semi-quantitative scoring system. DWI score was correlated to CT sub-scores for bronchiectasis (CF-CTBE), mucus (CF-CTmucus), total score (CF-CTtotal-score), FEV1, and BMI. T-test was used to assess differences between patients with and without DWI-hotspots

    Management of respiratory tract exacerbations in people with cystic fibrosis: Focus on imaging

    Get PDF
    Respiratory tract exacerbations play a crucial role in progressive lung damage of people with cystic fibrosis, representing a major determinant in the loss of functional lung tissue, quality of life and patient survival. Detection and monitoring of respiratory tract exacerbations are challenging for clinicians, since under- and over-treatment convey several risks for the patient. Although various diagnostic and monitoring tools are available, their implementation is hampered by the current definition of respiratory tract exacerbation, which lacks objective “cut-offs” for clinical and lung function parameters. In particular, the latter shows a large variability, making the current 10% change in spirometry outcomes an unreliable threshold to detect exacerbation. Moreover, spirometry cannot be reliably performed in preschool children and new emerging tools, such as the forced oscillation technique, are still complementary and need more validation. Therefore, lung imaging is a key in providing respiratory tract exacerbation-related structural and functional information. However, imaging encompasses several diagnostic options, each with different advantages and limitations; for instance, conventional chest radiography, the most used radiological technique, may lack sensitivity and specificity in respiratory tract exacerbations diagnosis. Other methods, including computed tomography, positron emission tomography and magnetic resonance imaging, are limited by either radiation safety issues or the need for anesthesia in uncooperative patients. Finally, lung ultrasound has been proposed as a safe bedside option but it is highly operator-dependent and there is no strong evidence of its possible use during respiratory tract exacerbation. This review summarizes the clinical challenges of respiratory tract exacerbations in patients with cystic fibrosis with a special focus on imaging. Firstly, the definition of respiratory tract exacerbation is examined, while diagnostic and monitoring tools are briefly described to set the scene. This is followed by advantages and disadvantages of each imaging technique, concluding with a diagnostic imaging algorithm for disease monitoring during respiratory tract exacerbation in the cystic fibrosis patient

    The radiological diagnosis of bronchiectasis: What’s in a name?

    Get PDF
    Diagnosis of bronchiectasis is usually made using chest computed tomography (CT) scan, the current gold standard method. A bronchiectatic airway can show abnormal widening and thickening of its airway wall. In addition, it can show an irregular wall and lack of tapering, and/or can be visible in the periphery of the lung. Its diagnosis is still largely expert based. More recently, it has become clear that airway dimensions on CT and therefore the diagnosis of bronchiectasis are highly dependent on lung volume. Hence, control of lung volume is required during CT acquisition to standardise the evaluation of airways. Automated image analysis systems are in development for the objective analysis of airway dimensions and for the diagnosis of bronchiectasis. To use these systems, clear and objective definitions for the diagnosis of bronchiectasis are needed. Furthermore, the use of these systems requires standardisation of CT protocols and of lung volume during chest CT acquisition. In addition, sex-and age-specific reference values are needed for image analysis outcome parameters. This review focusses on today’s issues relating to the radiological diagnosis of bronchiectasis using state-of-the-art CT imaging techniques

    Magnetic resonance imaging of the larynx in the pediatric population: A systematic review

    Get PDF
    Abstract Background: Magnetic Resonance Imaging (MRI) techniques to image the larynx have evolved rapidly into a promising and safe imaging modality, without need for sedation or ionizing radiation. MRI is therefore of great interest to image pediatric laryngeal diseases. Our aim was to review MRI developments relevant for the pediatric larynx and to discuss future imaging options. Methods: A systematic search was conducted to identify all morphological and diagnostic studies in which MRI was used to image the pediatric larynx, laryngeal disease, or vocal cords. Results: Fourteen articles were included: three studies on anatomical imaging of the larynx, two studies on Diffusion Weighted Imaging, four studies on vocal cord imag

    Structure and Function of the Vocal Cords after Airway Reconstruction on Magnetic Resonance Imaging

    Get PDF
    Objectives/Hypothesis: Dysphonia is a common problem at long-term follow-up after airway surgery for laryngotracheal stenosis (LTS) with major impact on quality of life. Dysphonia after LTS can be caused by scar tissue from initial stenosis along with anatomical alterations after surgery. There is need for a modality to noninvasively image structure and function of the reconstructed upper airways including the vocal cords to assess voice outcom

    Дискретно-континуальные системы: подходы, модели, программно-модельные комплексы

    Get PDF
    <div><p>Background</p><p>Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respiratory muscle involvement is necessary to initiate treatment in time and possibly prevent irreversible damage. In this paper we investigate the suitability of dynamic MR imaging in combination with state-of-the-art image analysis methods to assess respiratory muscle weakness.</p><p>Methods</p><p>The proposed methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle.</p><p>Results</p><p>Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls) of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function tests. Pompe patients with severely reduced pulmonary function showed severe diaphragm weakness presented by minimal motion of the diaphragm. In patients with moderately reduced pulmonary function, cranial displacement of posterior diaphragm parts was reduced and the diaphragm dome was oriented more horizontally at full inspiration compared to healthy controls.</p><p>Conclusion</p><p>Dynamic 3D MRI provides data for analyzing the contribution of both diaphragm and thoracic muscles independently. The proposed image analysis method has the potential to detect less severe diaphragm weakness and could thus be used to determine the optimal start of treatment in adult patients with Pompe disease in prospect of increased treatment response.</p></div

    The use of chest magnetic resonance imaging in interstitial lung disease: a systematic review

    Get PDF
    Thin-slices multi-detector computed tomography (MDCT) plays a key role in the differential diagnosis of interstitial lung disease (ILD). However, thin-slices MDCT has a limited ability to detect active inflammation, which is an important target of newly developed ILD drug therapy. Magnetic resonance imaging (MRI), thanks to its multi-parameter capability, provides better tissue characterisation than thin-slices MDCT.Our aim was to summarise the current status of MRI applications in ILD and to propose an ILD-MRI protocol. A systematic literature search was conducted for relevant studies on chest MRI in patients with ILD.We retrieved 1246 papers of which 55 original papers were selected for the review. We identified 24 studies comparing image quality of thin-slices MDCT and MRI using several MRI sequences. These studies described new MRI sequences to assess ILD parenchymal abnormalities, such as honeycombing, reticulation and ground-glass opacity. Thin-slices MDCT remains superior to MRI for morphological imaging. However, recent studies with ultra-short echo-time MRI showed image quality comparable to thin-slices MDCT. Several studies demonstrated the added value of chest MRI by using functional imaging, especially to detect and quantify inflammatory changes.We concluded that chest MRI could play a role in ILD patients to differentiate inflammatory and fibrotic changes and to assess efficacy of new ILD drugs

    Technical challenges of quantitative chest MRI data analysis in a large cohort pediatric study

    Get PDF
    Objectives: This study was conducted in order to evaluate the effect of geometric distortion (GD) on MRI lung volume quantification and evaluate available manual, semi-automated, and fully automated methods for lung segmentation. Methods: A phantom was scanned with MRI and CT. GD was quantified as the difference in phantom’s volume between MRI and CT, with CT as gold standard. Dice scores were used to measure overlap in shapes. Furthermore, 11 subjects from a prospective population-based cohort study each underwent four chest MRI acquisitions. The resulting 44 MRI scans with 2D and 3D Gradwarp were used to test five segmentation methods. Intraclass correlation coefficient, Bland–Altman plots, Wilcoxon, Mann–Whitney U, and paired t tests were used for statistics. Results: Using phantoms, volume differences between CT and MRI varied according to MRI positions and 2D and 3D Gradwarp correction. With the phantom located at the isocenter, MRI overestimated the volume relative to CT by 5.56 ± 1.16 to 6.99 ± 0.22% with body and torso coils, respectively. Higher Dice scores and smaller intraobject differences were found for 3D Gradwarp MR images. In subjects, semi-automated and fully automated segmentation tools showed high agreement with manual segmentations (ICC = 0.971–0.993 for end-inspiratory scans; ICC = 0.992–0.995 for end-expiratory scans). Manual segmentation time per scan was approximately 3–4 h and 2–3 min for fully automated methods. Conclusions: Volume overestimation of MRI due to GD can be quantified. Semi-automated and fully automated segmentation methods allow accurate, reproducible, and fast lung volume quantification. Chest MRI can be a valid radiation-free imaging modality for lung segmentation and volume quantification in large cohort studies. Key Points: • Geometric distortion varies according to MRI setting and patient positioning. • Automated segmentation methods allow fast and accurate lung volume quantification. • MR
    corecore